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Starfish is a framework used for robust spectroscopic inference. While this package was designed around the need
to infer stellar properties such as effective temperature 𝑇eff , surface gravity log(𝑔), and metallicity [Fe/H] from high
resolution spectra, the framework could easily be adapted to any type of model spectra: g alaxy spectra, supernovae
spectra, or spectra of unresolved stellar clusters.

For more technical information, please see our paper. Also, please cite both the paper and the code if Starfish or any
derivative of its work was used for yours!
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CHAPTER 1

Contents

1.1 Introduction

1.1.1 Deriving Physical Parameters from Astronomical Spectra

Consider the following scenario: An astronomer returns from a successful observing trip with many high signal-
to-noise, high resolution stellar spectra on her trusty USB thumbdrive. If she was observing with the type of echelle
spectrograph common to most modern observatories, chances are that her data span a significant spectral range, per-
haps the full optical ( 3700 to 9000 angstrom) or the full near-infrared (0.7 to 5 microns). Now that she’s back at her
home institution, she sets herself to the task of determining the stellar properties of her targets.

She is an expert in the many existing well-tested techniques for determining stellar properties, such as MOOG and
SME. But the fact that these use only a small portion of her data—several well-chosen lines like Fe and Na—has
stubbornly persisted in the back of her mind.

At the same time, the astronomer has been paying attention to the steady increase in availability of high quality syn-
thetic spectra, produced by a variety of groups around the world. These libraries span a large range of the stellar
parameters she cares about (effective temperature, surface gravity, and metallicity) with a tremendous spectral cover-
age from the UV to the near-infrared—fully covering her dataset. She wonders, “instead of choosing a subset of lines
to study, what if I use these synthetic libraries to fit all of my data?”

She knows that it’s not quite as simple as just fitting more spectral range. She knows that even though the synthetic
spectral libraries are generally high quality and quite remarkable in their scope, it is still very hard to produce perfect
synthetic spectra. This is primarily due to inaccuracies in atomic and molecular constants that are difficult to measure
in the lab, making it difficult to ensure that all spectral lines are accurate over a wide swath of both stellar parameters
and spectral range. The highest quality libraries tend to achieve their precision by focusing on a “sweet spot” of
stellar parameters near those of the Sun, and by choosing a limited spectral range, where atomic constants can be
meticulously vetted for accuracy.

The astronomer also knows that some of her stars may have non-solar ratios of elemental abundances, a behavior that
is not captured by the limited set of adjustable parameters t hat specify a spectrum in a synthetic library. She’s tried
fitting the full spectrum of her stars using a simple 𝜒2 likelihood function, but she knows that ignoring these effects
will lead to parameter estimates that are biased and have unrealistically small uncertainties. She wonders, “How can I
fit my entire spectrum but avoid these pitfalls?”
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1.1.2 Introducing Starfish: a General Purpose Framework for Robust Spectro-
scopic Inference

We have developed a framework for spectroscopic inference that fulfills the astronomer’s dream of using all of the
data, called Starfish. Our statistical framework attempts to overcome many of the difficulties that the astronomer
noted. Principally, at high resolution and high sensitivity, model systematics—such as inaccuracies in the strengths of
particular lines—will dominate the noise budget.

We address these problems by accounting for the covariant structure of the residuals that can result from fitting models
to data in this high signal-to-noise, high spectral resolution regime. Using some of the machinery developed by the
field of Gaussian processes, we can parameterize the covariant structure both due to general line mis-matches as well
as specific “outlier” spectral lines due to pathological errors in the atomic and molecular line databases.

Besides alleviating the problem of systematic bias and spectral line outliers when inferring stellar parameters, this
approach has many added benefits. By forward-modeling the data spectrum, we put the problem of spectroscopic
inference on true probabilistic footing. Rather than iterating in an open loop between stellar spectroscopists and
stellar modelers, whereby knowledge about the accuracies of line fits is communicated post-mortem, a probabilistic
inference framework like Starfish delivers posterior distributions over the locations and strengths of outlier spectral
lines. Combined with a suite of stellar spectra spanning a range of stellar parameters and a tunable list of atomic and
molecular constants, a probabilistic framework like this provides a way to close the loop on improving both the stellar
models and the stellar parameters inferred from them by comparing models to data directly, rather than mediating
through a series of fits to selected spectral lines.

Lastly, using a forward model means that uncertainties about other non-stellar parameters, such as flux-calibration or
interstellar reddening, can be built into the model and propagated forward. In a future version of Starfish we aim to
include a parameterization for the accretion continuum that “veils” the spectra of young T Tauri stars.

1.1.3 Fitting Many Lines at Once

Here is a general example of what can happen when one attempts to fit data with synthetic spectra over a wide spectral
range. This is an optical spectrum of WASP-14, an F star hosting a transiting exoplanet.

Fig. 1: A comparison of the data and a typical model fit, along with the corresponding residual spectrum. Notice that
this residual spectrum does not look like pure white noise.

Fig. 2: A zoomed view of the gray band in the top panel, highlighting the mildly covariant residual structure that is
produced by slight mismatches between the data and model spectra.

Fig. 3: The autocorrelation of the residual spectrum. Notice the substantial autocorrelation signal for offsets of 8 pixels
or fewer, demonstrating clearly that the residuals are not well described by white (Poisson) noise alone.

1.1.4 Spectral Line Outliers

Here is a specific example of individual lines that are strongly discrepant from the data. There is substantial localized
structure in the residuals due to “outlier” spectral lines in the model library. For any specific line, there might exist a
set of model parameters that will improve the match with the data, but there is no single set of model parameters that
will properly fit all of the lines at once.
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1.1.5 Model the Covariance

In order to account for the covariant residual structure which results from model systematics, we derive a likelihood
function with a non-trivial covariance matrix, which maps the covariances between pixels.

𝑝(𝐷|𝑀) ∝ |det(𝐶)|−1/2
exp

(︂
−1

2
𝑅𝑇𝐶−1𝑅

)︂
We then parameterize this covariance matrix 𝐶 using Gaussian process covariance kernels. This procedure is demon-
strated in the following figure through the following decomposition of how the Gaussian process kernels contribute to
the covariance matrix.

top panel: a typical comparison between the data and model spectra, along with the associated residual spectrum. The
subsequent rows focus on the illustrative region shaded in gray.

The left column of panels shows the corresponding region of the covariance matrix 𝐶, decomposed into its primary
contributions: (top row) the trivial noise matrix using just Poisson errors 𝛿𝑖𝑗𝜎𝑖, (middle row) the trivial matrix com-
bined with a “global” covariance kernel 𝜅𝐺, and (bottom row) these matrices combined with a “local” covariance
kernel 𝜅𝐿 to account for an outlier spectral line.

The right column of panels shows the zoomed-in residual spectrum with example random draws from the covariance
matrix to the left. The shaded contours in orange represent the 1, 2, and 3 sigma dispersions of an ensemble of 200
random draws from the covariance matrix. Note that the trivial covariance matrix (top row) poorly reproduces both the
scale and structure of the residual spectrum. The addition of a global kernel (middle row) more closely approximates
the structure and amplitude of the residuals, but misses the outlier line at 5202.5 angstroms. Including a local kernel at
that location (bottom row) results in a covariance matrix that does an excellent job of reproducing all the key residual
features.

1.1.6 Robust to Outlier Spectral Lines

Starfish uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar
parameters, including the noise parameters which describe the covariance of the residuals. By fitting all of the pa-
rameters simultaneously, we can be more confident that we have properly accounted for our uncertainty in these other
parameters.

top A K-band SPEX spectrum of Gl 51 (an M5 dwarf) fit with a PHOENIX spectroscopic model. While the general
agreement of the spectrum is excellent, the strength of the Na and Ca lines is underpredicted (also noted by Rojas-Ayala
et al. 2012).

bottom The residual spectrum from this fit along with orange shading contours representing the distributions of a large
number of random draws from the covariance matrix (showing 1, 2, and 3 sigma).

Notice how the outlier spectral line features are consistently identified and downweighted by the local covariance
kernels. Because the parameters for the local kernels describing the spectral outliers are determined self-consistently
along with the stellar parameters, we can be more confident that the influence of these outlier lines on the spectral fit is
appropriately downweighted. This weighting approach is in contrast to a more traditional “sigma-clipping” procedure,
which would discard these points from the fit. As noted by Mann et al. 2013, some mildly discrepant spectral regions
actually contain significant spectral information about the stellar parameters, perhaps more information than spectral
regions that are in excellent agreement with the data. Rather than simply discarding these discrepant regions, the
appropriate step is then to determine the weighting by which these spectral regions should contribute to the total
likelihood. These local kernels provide exactly such a weighting mechanism.
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1.1.7 Marginalized Stellar Parameters

The forward modeling approach is unique in that the result is a posterior distribution over stellar parameters. Rather
than yielding a simple metric of “best-fit” parameters, exploring the probability distribution with MCMC reveals any
covariances between stellar parameters. For this star with the above K-band spectrum, the covariance between 𝑇𝑒𝑓𝑓

and [𝐹𝑒/𝐻] is mild, but for stars of different spectral types the degeneracy can be severe.

Fig. 4: The posterior probability distribution of the interesting stellar parameters for Gl 51, marginalized over all of
nuisance parameters including the covariance kernel hyperparameters. The contours are drawn at 1, 2, and 3 sigma
levels for reference.

1.1.8 Spectral Emulator

For spectra with very high signal to noise, interpolation error from the synthetic library may constitute a significant
portion of the noise budget. This error is due to the fact that stellar spectral synthesis is an inherently non-linear
process requiring complex model atmospheres and radiative transfer. Unfortunately, we are not (yet) in an age where
synthetic spectral synthesis over a large spectral range is fast enough to use within a MCMC call. Therefore, it is
necessary to approximate an interpolated spectrum based upon spectra with similar stellar properties.

Following the techniques of Habib et al. 2007, we design a spectral emulator, which, rather than interpolating spectra,
delivers a probability distribution over all probable interpolate spectra. Using this probability distribution, we can in
our likelihood function analytically marginalize over all probable spectral interpolations, in effect forward propagating
any uncertainty introduced by the interpolation process.

top The mean spectrum, standard deviation spectrum, and five eigenspectra that form the basis of the PHOENIX
synthetic library used to model Gl 51, generated using a subset of the parameter space most relevant for M dwarfs.

bottom The original synthetic spectrum from the PHOENIX library (𝑇𝑒𝑓𝑓 = 3000 K, 𝑙𝑜𝑔𝑔 = 5.0 dex, [𝐹𝑒/𝐻] = 0.0
dex) compared with a spectrum reconstructed from a linear combination of the derived eigenspectra, using the weights
listed in the top panel.

1.2 Conversion from 0.2

There have been some significant changes to Starfish in the upgrades to version 0.3. Below are some of the main
changes, and we also recommend viewing some of the Examples to get a hang for the new workflow.

Warning: The current, updated code base does not have the framework for fitting multi-order Echelle spectra.
We are working diligently to update the original functionality to match the updated API. For now, you will have to
revert to Starfish 0.2.

1.2.1 API-ification

One of the new goals for Starfish was to provide a more Pythonistic approach to its framework. This means instead of
using configuration files and scripts the internals for Starfish are laid out and leave a lot more flexibility to the end-user
without losing the functionality.

There are no more scripts

1.2. Conversion from 0.2 7
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None of the previous scripts are included in version 0.3. Instead, the functionality of the scripts is enocded into some
of the examples, which should allow users a quick way to copy-and-paste their way into a working setup.

There is no more config.yaml

This file has been eliminated as a byproduct of two endeavors: first is the elimination of the scripts- with a more
interactive API in mind, we don’t need to hardcode our values in a configuration file. Second is the smoothing of the
consistency between the grid tools, the spectral emulator, and the statistical models. For instance, we don’t need a
configuration value for the grid parameter names because we can leave these as attributes in our GridInterfaces and
propagate them upwards through the classes that use the interface.

The modularity has skyrocketed

One of the BIGGEST products of this rewrite is the simplification of the core of what Starfish provides: a statistical
model for stellar spectra. If you have extra science you want to do, for example: binary star modelling, debris disk
modeling, sun spot modeling, etc. we no longer lock down the full maximum likelihood estimation process. Because
the new models provide, essentially, transformed stellar models and covariances, if we want to do our own science with
the models beyond what Starfish already does, we can just plug-and-play! Here is some psuedo-code that exemplifies
this behavior:

from Starfish.models import SpectrumModel
from Starfish.emulator import Emulator
from astropy.modeling import blackbody

emu = Emulator.load('emu.hdf5')
model = SpectrumModel(..., **initial_parameters)

flux, cov = model()
dust_flux = blackbody(model.data.waves, T_dust)
flux += dust_flux

# Continue with MLE using this composite flux

Overall, there are a lot of changes to the workflow for Starfish, too. So, again, I highly recommend looking through
some Examples and browsing through the API.

1.2.2 Maintenenance

Clean up

Much of the bloat of the previous repository has been pruned. There still exists archived versions from the GitHub
releases, but we’ve really tried to turn this into a much more professional-looking repository. If there were old files
you were using or need to have a copy of, check out the archive.

CI Improvements

The continuous integration has also been improved to help limit the bugs we let through as well as vamp up some
of the software development tools that are available to us. You’ll see a variety of more pretty badges as well as a
much-improved travis-ci matrix that allows us to test on multiple platforms and for multiple python versions

Cleaning up old Issues

Many issues are well outdated and will soon become irrelevant with version 0.3. In an effort to remove some of the
clutter we will be closing all issues older than 6 months old or that are solved with the new version. If you had an old
issue and feel it was not resolved, feel free to reach out and reopen it so we can work on further improving Starfish.
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1.3 Overview

Spectroscopic inference is typically a complicated process, requiring customization based upon the type of spectrum
used. Therefore, Starfish is not a one-click solution but rather a framework of code that provides the building blocks
for any spectroscopic inference code one may write. We provide a few example scripts that show how the Starfish
code objects may be combined to solve a typical spectroscopic inference problem. This page summarizes the various
components available for use and seeks to orient the user. More detailed information is provided at the end of each
section.

1.3.1 Citation

If Starfish or any derivative of it was used for your work, please cite both the paper and the code. Thanks!

1.3.2 Installation

The source code and installation instructions can be found at the Github repository for Starfish at https://github.com/
iancze/Starfish but it should be easy enough to run

pip install astrostarfish

If you prefer to play with some of our new features, check out the develop branch

pip install git+https://github.com/iancze/Starfish.git@develop#egg=astrostarfish

or if you prefer an editable version just add the -e flag to pip

1.3.3 Obtaining model spectra

Because any stellar synthesis step is currently prohibitively expensive for the purposes of Markov Chain Monte Carlo
(MCMC) exploration, Starfish relies upon model spectra provided as a synthetic library. However, if you do have a
synthesis back-end that is fast enough, please feel free to swap out the synthetic library for your synthetic back-end.

First, you will need to download your synthetic spectral library of choice. What libraries are acceptable are dictated
by the spectral range and resolution of your data. In general, it is preferable to start with a raw synthetic library
that is sampled at least a factor of ~5 higher than your data. For our paper, we used the freely available PHOENIX
library synthesized by T. O. Husser. Because the size of spectral libraries is typically measured in gigabytes, I would
recommend starting the download process now, and then finish reading the documentation :)

More information about how to download raw spectra and use other synthetic spectra is available in Grid Tools.
Starfish provides a few objects which interface to these spectral libraries.

1.3.4 The Spectral Emulator

For high signal-to-noise data, we found that any interpolation error can constitute a large fraction of the uncertainty
budget (see the appendix of our paper). For lower quality data, it may be possible to live with this interpolation error
and use a simpler (and faster) interpolation scheme, such as tri-linear interpolation. However, we found that for sources
with 𝑆/𝑁 ≥ 100 a smoother interpolation scheme was required, and so we developed a spectral emulator.

The spectral emulator works by reconstructing spectra from a linear combination of eigenspectra, where the weight
for each eigenspectrum is a function of the model parameters. Therefore, the first step is to deconstruct your spectral
library into a set of eigenspectra using principal component analysis (PCA). Thankfully, most of the heavy lifting is
already implemented by the scikit-learn package.

1.3. Overview 9
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The next step is training a Gaussian Process to model the reconstruction weights as a function of model parameters
(e.g., effective temperature 𝑇eff , surface gravity log(𝑔), and metallicity [Fe/H]). Because the spectral emulator delivers
a probability distribution over the many possible interpolated spectra, we can propagate interpolation uncertainty into
our final parameter estimates. For more on setting up the emulator, see Spectral Emulator.

1.3.5 Spectrum data formats and runtime

High resolution spectra are frequently taken with echelle spectrographs, which have many separate spectral orders,
or “chunks”, of data. This chunking is convenient because the likelihood evaluation of each chunk is independent
from the other chunks, meaning that the global likelihood evaluation for the entire spectrum can be parallelized on a
computer with many cores.

The runtime of Starfish strongly scales with the number of pixels in each chunk. If instead of a chunked dataset, you
have a single merged array of more than 3000 pixels, we strongly advise chunking the dataset up to speed computation
time. As long as you have as many CPU cores as you do chunks, the evaluation time of Starfish is roughly independent
of the number of chunks. Therefore, if you have access to a 64 core node of a cluster, Starfish can fit an entire ~50
order high-res echelle spectrum in about the same time as it would take to fit a single order. (For testing purposes, it
may be wise to use only single order to start, however.)

Astronomical spectra come in a wide variety of formats. Although there is effort to simplify reading these formats,
it is beyond the scope of this package to provide an interface that would suit everyone. Starfish requires that the user
convert their spectra into one of two simple formats: numpy arrays or HDF5 files. For more about converting spectra
to these data formats, see Spectrum.

1.3.6 The MCMC driver script

The main purpose of Starfish is to provide a framework for robustly deriving model parameters using spectra. The
ability to self-consistently downweight model systematics resulting from incorrectly modeled spectral lines is ac-
complished by using a non-trivial covariance matrix as part of a multi-dimensional Gaussian likelihood function. In
principle, one could use traditional non-linear optimization techniques to find the maximum of the posterior prob-
ability distribution with respect to the model parameters. However, because one is usually keenly interested in the
uncertainties on the best-fitting parameters, we must use an optimization technique that explores the full posterior,
such as Markov Chain Monte Carlo (MCMC).

1.3.7 Memory usage

In our testing, Starfish requires a moderate amount of RAM per process (~1 Gb) for a spectrum that has chunk sizes
of ~3000 pixels.

1.4 API

Here you will find the documentation for the api methods and scripts that make up the core of Starfish. For even
more in-depth reference, you may wish to dig through the source code at GitHub. Make sure you have followed the
installation instructions

1.4.1 Grid Tools

grid_tools is a module to interface with and manipulate libraries of synthetic spectra.

10 Chapter 1. Contents
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• Grid Tools

– Downloading model spectra

– Raw Grid Interfaces

– HDF5 creators and Fast interfaces

– Interpolators

– Instruments

– Utility Functions

It defines many useful functions and objects that may be used in the modeling package model, such as
Interpolator.

Downloading model spectra

Before you may begin any fitting, you must acquire a synthetic library of model spectra. If you will be fitting spectra
of stars, there are many high quality synthetic and empirical spectral libraries available. In our paper, we use the
freely available PHOENIX library synthesized by T.O. Husser. The library is available for download here: http:
//phoenix.astro.physik.uni-goettingen.de/. We provide a helper function download_PHOENIX_models() if you
would prefer to use that.

Because spectral libraries are generally large (> 10 GB), please make sure you available disk space before beginning
the download. Downloads may take a day or longer, so it is recommended to start the download ASAP.

You may store the spectra on disk in whatever directory structure you find convenient, provided you adjust the Starfish
routines that read spectra from disk. To use the default settings for the PHOENIX grid, please create a libraries
directory, a raw directory within libraries, and unpack the spectra in this format:

libraries/raw/
PHOENIX/

WAVE_PHOENIX-ACES-AGSS-COND-2011.fits
Z+1.0/
Z-0.0/
Z-0.0.Alpha=+0.20/
Z-0.0.Alpha=+0.40/
Z-0.0.Alpha=+0.60/
Z-0.0.Alpha=+0.80/
Z-0.0.Alpha=-0.20/
Z-0.5/
Z-0.5.Alpha=+0.20/
Z-0.5.Alpha=+0.40/
Z-0.5.Alpha=+0.60/
Z-0.5.Alpha=+0.80/
Z-0.5.Alpha=-0.20/
Z-1.0/

Raw Grid Interfaces

Grid interfaces are classes designed to abstract the interaction with the raw synthetic stellar libraries under a common
interface. The GridInterface class is designed to be extended by the user to provide access to any new grids.

1.4. API 11

http://phoenix.astro.physik.uni-goettingen.de/
http://phoenix.astro.physik.uni-goettingen.de/


Starfish Documentation, Release 0.3.0

Currently there are extensions for three main grids:

1. PHOENIX spectra by T.O. Husser et al 2013 PHOENIXGridInterface

2. Kurucz spectra by Laird and Morse (available to CfA internal only) KuruczGridInterface

3. PHOENIX BT-Settl spectra by France Allard BTSettlGridInterface

There are two interfaces provided to the PHOENIX/Husser grid: one that includes alpha enhancement and another
which restricts access to 0 alpha enhancement.

Here and throughout the code, stellar spectra are referenced by a numpy array of parameter values, which corresponds
to the parameters listed in the config file.

my_params = np.array([6000, 3.5, 0.0, 0.0])

Here we introduce the classes and their methods. Below is an example of how you might use the
PHOENIXGridInterface.

PHOENIX Interfaces

In order to load a raw file from the PHOENIX grid, one would do

# if you downloaded the libraries elsewhere, be sure to include base="mydir"
import Starfish
from Starfish.grid_tools import PHOENIXGridInterfaceNoAlpha as PHOENIX
import numpy as np
mygrid = PHOENIX()
my_params = np.array([6000, 3.5, 0.0])
flux, hdr = mygrid.load_flux(my_params, header=True)

In [5]: flux
Out[5]:
array([ 4679672.5 , 4595894. , 4203616.5 , ...,

11033.5625 , 11301.25585938, 11383.8828125 ], dtype=float32)

In [6]: hdr
Out[6]:
{'PHXDUST': False,
'PHXLUM': 5.0287e+34,
'PHXVER': '16.01.00B',
'PHXREFF': 233350000000.0,
'PHXEOS': 'ACES',
'PHXALPHA': 0.0,
'PHXLOGG': 3.5,
'PHXTEFF': 6000.0,
'PHXMASS': 2.5808e+33,
'PHXXI_N': 1.49,
'PHXXI_M': 1.49,
'PHXXI_L': 1.49,
'PHXMXLEN': 1.48701064748,
'PHXM_H': 0.0,
'PHXBUILD': '02/Aug/2010',
'norm': True,
'air': True}

In [7]: mygrid.wl
Out[7]:

(continues on next page)
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(continued from previous page)

array([ 3000.00133087, 3000.00732938, 3000.01332789, ...,
53999.27587687, 53999.52580875, 53999.77574063])

There is also a provided helper function for downloading PHOENIX models

Other Library Interfaces

Creating your own interface

The GridInterface and subclasses exist solely to interface with the raw files on disk. At minimum, they should
each define a load_flux() , which takes in a dictionary of parameters and returns a flux array and a dictionary of
whatever information may be contained in the file header.

Under the hood, each of these is implemented differently depending on how the synthetic grid is created. In the case
of the BTSettl grid, each file in the grid may actually have a flux array that has been sampled at separate wavelengths.
Therefore, it is necessary to actually interpolate each spectrum to a new, common grid, since the wavelength axis of
each spectrum is not always the same. Depending on your spectral library, you may need to do something similar.

HDF5 creators and Fast interfaces

While using the Raw Grid Interfaces may be useful for ordinary spectral reading, for fast read/write it is best to use
HDF5 files to store only the data you need in a hierarchical binary data format. Let’s be honest, we don’t have all the
time in the world to wait around for slow computations that carry around too much data. Before introducing the various
ways to compress the spectral library, it might be worthwhile to review the section of the Spectrum documentation that
discusses how spectra are sampled and resampled in log-linear coordinates.

If we will be fitting a star, there are generally three types of optimizations we can do to the spectral library to speed
computation.

1. Use only a range of spectra that span the likely parameter space of your star. For example, if we know we have
an F5 star, maybe we will only use spectra that have 5900 K ≤ 𝑇eff ≤ 6500 K.

2. Use only the part of the spectrum that overlaps your instrument’s wavelength coverage. For example, if the
range of our spectrograph is 4000 - 9000 angstroms, it makes sense to discard the UV and IR portions of the
synthetic spectrum.

3. Resample the high resolution spectra to a lower resolution more suitably matched to the resolution of your
spectrograph. For example, PHOENIX spectra are provided at 𝑅 ∼ 500, 000, while the TRES spectrograph has
a resolution of 𝑅 ∼ 44, 000.

All of these reductions can be achieved using the HDF5Creator object.

HDF5Creator

Here is an example using the HDF5Creator to transform the raw spectral library into an HDF5 file with spectra that
have the resolution of the TRES instrument. This process is also located in the scripts/grid.py if you are using
the cookbook.

import Starfish
from Starfish.grid_tools import PHOENIXGridInterfaceNoAlpha as PHOENIX
from Starfish.grid_tools import HDF5Creator, TRES

(continues on next page)
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(continued from previous page)

mygrid = PHOENIX()
instrument = TRES()

creator = HDF5Creator(mygrid, instrument)
creator.process_grid()

HDF5Interface

Once you’ve made a grid, then you’ll want to interface with it via HDF5Interface. The HDF5Interface pro-
vides load_flux() similar to that of the raw grid interfaces. It does not make any assumptions about how what
resolution the spectra are stored, other than that the all spectra within the same HDF5 file share the same wavelength
grid, which is stored in the HDF5 file as ‘wl’. The flux files are stored within the HDF5 file, in a subfile called ‘flux’.

For example, to load a file from our recently-created HDF5 grid

import Starfish
from Starfish.grid_tools import HDF5Interface
import numpy as np

# Assumes you have already created and HDF5 grid
myHDF5 = HDF5Interface()
flux = myHDF5.load_flux(np.array([6100, 4.5, 0.0]))

In [4]: flux
Out[4]:
array([ 10249189., 10543461., 10742093., ..., 9639472., 9868226.,

10169717.], dtype=float32)

Interpolators

The interpolators are used to create spectra in between grid points, for example [6114, 4.34, 0.12, 0.1].

For example, if we would like to generate a spectrum with the aforementioned parameters, we would do

myInterpolator = Interpolator(myHDF5)
spec = myInterpolator([6114, 4.34, 0.12, 0.1])

Instruments

In order to take the theoretical synthetic stellar spectra and make meaningful comparisons to actual data, we need to
convolve and resample the synthetic spectra to match the format of our data. Instrument s are a convenience object
which store the relevant characteristics of a given instrument.

List of Instruments

It is quite easy to use the Instrument class for your own data, but we provide classes for most of the well-known
spectrographs. If you have a spectrograph that you would like to add if you think it will be used by others, feel free to
open a pull request following the same format.
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Utility Functions

Wavelength conversions

1.4.2 Spectral Emulator

The spectral emulator can be likened to the engine behind Starfish. While the novelty of Starfish comes from using
Gaussian processes to model and account for the covariances of spectral fits, we still need a way to produce model
spectra by interpolating from our synthetic library. While we could interpolate spectra from the synthetic library using
something like linear interpolation in each of the library parameters, it turns out that high signal-to-noise data requires
something more sophisticated. This is because the error in any interpolation can constitute a significant portion of
the error budget. This means that there is a chance that non-interpolated spectra (e.g., the parameters of the synthetic
spectra in the library) might be given preference over any other interpolated spectra, and the posteriors will be peaked
at the grid point locations. Because the spectral emulator returns a probability distribution over possible interpolated
spectra, this interpolation error can be quantified and propagated forward into the likelihood calculation.

Eigenspectra decomposition

The first step of configuring the spectral emulator is to choose a subregion of the spectral library corresponding to the
star that you will fit. Then, we want to decompose the information content in this subset of the spectral library into
several eigenspectra. [Figure A.1 here].

The eigenspectra decomposition is performed via Principal Component Analysis (PCA). Thankfully, most of the heavy
lifting is already implemented by the sklearn package.

Emulator.from_grid() allows easy creation of spectral emulators from an Starfish.grid_tools.
HDF5Interface, which includes doing the initial PCA to create the eigenspectra.

>>> from Starfish.grid_tools import HDF5Interface
>>> from Starfish.emulator import Emulator
>>> emulator = Emulator.from_grid(HDF5Interface('grid.hdf5'))

Optimizing the emulator

Once the synthetic library is decomposed into a set of eigenspectra, the next step is to train the Gaussian Processes
(GP) that will serve as interpolators. For more explanation about the choice of Gaussian Process covariance functions
and the design of the emulator, see the appendix of our paper.

The optimization of the GP hyperparameters can be carried out by any maximum likelihood estimation framework,
but we include a direct method that uses scipy.optimize.minimize.

To optimize the code, we will use the Emulator.train() routine.

Example optimizing using minimization optimizer

>>> from Starfish.grid_tools import HDF5Interface
>>> from Starfish.emulator import Emulator
>>> emulator = Emulator.from_grid(HDF5Interface('grid.hdf5'))
>>> emulator
Emulator
--------
Trained: False
lambda_xi: 2.718
Variances:

10000.00

(continues on next page)
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(continued from previous page)

10000.00
10000.00
10000.00

Lengthscales:
[ 600.00 1.50 1.50 ]
[ 600.00 1.50 1.50 ]
[ 600.00 1.50 1.50 ]
[ 600.00 1.50 1.50 ]

Log Likelihood: -1412.00
>>> emulator.train()
>>> emulator
Emulator
--------
Trained: True
lambda_xi: 2.722
Variances:

238363.85
5618.02
9358.09
2853.22

Lengthscales:
[ 1582.39 3.19 3.11 ]
[ 730.81 1.61 2.14 ]
[ 1239.45 3.71 2.78 ]
[ 1127.40 1.63 4.46 ]

Log Likelihood: -1158.83
>>> emulator.save('trained_emulator.hdf5')

Note: The built in optimization target changes the state of the emulator, so even if the output of the minimizer has
not converged, you can simply run Emulator.train() again.

If you want to perform MLE with a different method, feel free to make use of the general modeling framework provided
by the function Emulator.get_param_vector(), Emulator.set_param_vector(), and Emulator.
log_likelihood().

Model spectrum reconstruction

Once the emulator has been optimized, we can finally use it as a means of interpolating spectra.

>>> from Starfish.emulator import Emulator
>>> emulator = Emulator.load('trained_emulator.hdf5')
>>> flux = emulator.load_flux([7054, 4.0324, 0.01])
>>> wl = emu.wl

If you want to take advantage of the emulator covariance matrix, you must use the interface via the Emulator.
__call__() function

>>> from Starfish.emulator import Emulator
>>> emulator = Emulator.load('trained_emulator.hdf5')
>>> weights, cov = emulator([7054, 4.0324, 0.01])
>>> X = emulator.eigenspectra * emulator.flux_std
>>> flux = weights @ X + emulator.flux_mean
>>> emu_cov = X.T @ weights @ X
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Lastly, if you want to process the model, it is useful to process the eigenspectra before reconstructing, especially
if a resampling action has to occur. The Emulator provides the attribute Emulator.bulk_fluxes for such
processing. For example

>>> from Starfish.emulator import Emulator
>>> from Starfish.models.transforms import instrumental_broaden
>>> emulator = Emulator.load('trained_emulator.hdf5')
>>> fluxes = emulator.bulk_fluxes
>>> fluxes = instrumental_broaden(emulator.wl, fluxes, 10)
>>> eigs = fluxes[:-2]
>>> flux_mean, flux_std = fluxes[-2:]
>>> weights, cov = emulator([7054, 4.0324, 0.01])
>>> X = emulator.eigenspectra * flux_std
>>> flux = weights @ X + flux_mean
>>> emu_cov = X.T @ weights @ X

Note: Emulator.bulk_fluxes provides a copy of the underlying arrays, so there is no change to the emulator
when bulk processing.

Reference

Emulator

1.4.3 Spectrum

This module contains a few different routines for the manipulation of spectra.

Log lambda spacing

Throughout Starfish, we try to utilize log-lambda spaced spectra whenever possible. This is because this sampling
preserves the Doppler content of the spectrum at the lowest possible sampling. A spectrum spaced linear in log
lambda has equal-velocity pixels, meaning that

𝑣

𝑐
=

∆𝜆

𝜆

A log lambda spectrum is defined by the WCS keywords CDELT1, CRVAL1, and NAXIS1. They are related to the
physical wavelengths by the following relationship

𝜆 = 10CRVAL1+CDELT1×𝑖

where 𝑖 is the pixel index, with 𝑖 = 0 referring to the first pixel and 𝑖 = (NAXIS1 − 1) referring to the last pixel.

The wavelength array and header keywords are often stored in a wl_dict dictionary, which looks like {"wl":wl,
"CRVAL1":CRVAL1, "CDELT1":CDELT1, "NAXIS1":NAXIS1}.

These keywords are related to various wavelengths by

𝑣

𝑐
=

∆𝜆

𝜆
= 10CDELT1 − 1

CDELT1 = log10

(︁𝑣
𝑐

+ 1
)︁

CRVAL1 = log10(𝜆start)
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Many spectral routines utilize a keyword dv, which stands for ∆𝑣, or the velocity difference (measured in km/s) that
corresponds to the width of one pixel.

dv = 𝑐
∆𝜆

𝜆

When resampling wavelength grids that are not log-lambda spaced (e.g., the raw synthetic spectrum from the library)
onto a log-lambda grid, the dv must be calculated. Generally, calculate_dv() works by measuring the velocity
difference of every pixel and choosing the smallest, that way no spectral information will be lost.

Data Spectrum

The DataSpectrum holds the data spectrum that you wish to fit. You may read your data into this object in a few
ways. First let’s introduce the object and then discuss the reading methods.

First, you can construct an instance using the traditional __init__ method:

# Read waves, fluxes, and sigmas from your dataset
# as numpy arrays using your own method.
waves, fluxes, sigmas = myownmethod()

myspec = DataSpectrum(waves, fluxes, sigmas)

Since myownmethod() may require a bunch of additional dependencies (e.g, IRAF), for convenience you may want
to first read your data using your own custom method but then save it to a different format, like hdf5. Since HDF5
files are all the rage these days, you may want to use them to store your entire data set in a single binary file. If you
store your spectra in an HDF5 file as (norders, npix) arrays:

/
/waves
/fluxes
/sigmas
/masks

Then can read your data in as:

myspec = DataSpectrum.load("myspec.HDF5")

When using HDF5 files, we highly recommended using a GUI program like HDF View to make it easer to see what’s
going on.

1.4.4 Transforms

These classes and functions are used to manipulate stellar spectra. Users are not expected to directly call these methods
unless they are playing around with spectrums or creating custom methods.

Transformations

1.4.5 Models

SpectrumModel

The SpectrumModel is the main implementation of the Starfish methods for a single-order spectrum. It works by
interfacing with both Starfish.emulator.Emulator, Starfish.spectrum.DataSpectrum, and the
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methods in Starfish.models.transforms. The spectral emulator provides an interface to spectral model li-
braries with a covariance matrix for each interpolated spectrum. The transforms provide the physics behind alterations
to the light. For a given set of parameters, a transformed spectrum and covariance matrix are provided by

>>> from Starfish.models import SpectrumModel
>>> model = SpectrumModel(...)
>>> flux, cov = model()

It is also possible to optimize our parameters using the interfaces provided in SpectrumModel.
get_param_vector(), SpectrumModel.set_param_vector(), and SpectrumModel.
log_likelihood(). A very minimal example might be

>>> from Starfish.models import SpectrumModel
>>> from scipy.optimize import minimize
>>> model = SpectrumModel(...)
>>> def nll(P):

model.set_param_vector(P)
lnprob = model.log_likelihood()
return -lnprob

>>> P0 = model.get_param_vector()
>>> soln = minimize(nll, P0, method='Nelder-Mead')

For a more thorough example, see the Examples.

Parameterization

This model uses a method of specifying parameters very similar to Dan Foreman-Mackey’s George library. There
exists an underlying dictionary of the model parameters, which define what transformations will be made. For example,
if vz exists in a model’s parameter dictionary, then doppler shifting will occur when calling the model.

It is possible to have a parameter that transforms the spectrum, but is not fittable. We call these frozen parameters. For
instance, if my 3 model library parameters are 𝑇𝑒𝑓𝑓 , log 𝑔, and [𝐹𝑒/𝐻] (or T, logg, Z in the code), but I don’t want
to fit $log g$, I can freeze it:

>>> from Starfish.models import SpectrumModel
>>> model = SpectrumModel(...)
>>> model.freeze('logg')

When using this framework, you can see what transformations will occur by looking at SpectrumModel.params
and what values are fittable by SpectrumModel.get_param_dict() (or the other getters for the parameters).

>>> model.params
{'T': 6020, 'logg': 4.2, 'Z': 0.0, 'vsini': 84.0, 'log_scale': -10.23}
>>> model.get_param_dict()
{'T': 6020, 'Z': 0.0, 'vsini': 84.0, 'log_scale': -10.23}

To undo this, simply thaw the frozen parameters

>>> model.thaw('logg')
>>> model.params == model.get_param_dict()
True
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API/Reference

1.5 Examples

Here are where the cookbook and examples live.

1.5.1 Setup

This guide will show you how to get up and running with the grid tools and interfaces provided by Starfish.

Getting the Grid

To begin, we need a spectral model library that we will use for our fitting. One common example are the PHOENIX
models, most recently computed by T.O. Husser. We provide many interfaces directly with different libraries, which
can be viewed in Raw Grid Interfaces.

As a convenience, we provide a helper to download PHOENIX models from the Goettingen servers

import itertools
from Starfish.grid_tools import download_PHOENIX_models

T = [5000, 5100, 5200]
logg = [4.0, 4.5, 5.0]
Z = [0]
params = itertools.product(T, logg, Z)
download_PHOENIX_models(params, base='PHOENIX')

We now want to set up a grid interface to work with these downloaded files!

from Starfish.grid_tools import PHOENIXGridInterfaceNoAlpha

grid = PHOENIXGridInterfaceNoAlpha(base='PHOENIX')

From here, we will want to set up our HDF5 interface that will allow us to go on to using the spectral emulator, but
first we need to determine our model subset and instrument.

Setting up the HDF5 interface

We set up an HDF5 interface in order to allow much quicker reading and writing than compared to loading FITS files
over and over again. In addition, when considering the application to our likelihood methods, we know that for a
given dataset, any effects characteristic of the instrument can be pre-applied to our models, saving on computation
time during the maximum likelihood estimation.

Looking towards our fitting examples, we know we will try fitting some data from the TRES spectrograph. We provide
many popular spectrographs in our grid tools, including TRES.

Let’s also say that, for a given dataset (in our future examples we use WASP 14 so let’s consider that), we want to
only use a reasonable subset of our original model grid. WASP 14 is currently labeled as an F5V star, so let’s create a
subset around that classification.

from Starfish.grid_tools.instruments import TRES

# Parameters are Teff, logg, and Z

(continues on next page)
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ranges = [
[5900, 7400],
[3.0, 6.0],
[-1.0, 1.0]

]
inst = TRES()

Now we can create and process our HDF5Interface

from Starfish.grid_tools import HDF5Creator

creator = HDF5Creator(grid, 'F_TRES_grid.hdf5', instrument=inst, ranges=ranges)
creator.process_grid()

Setting up the Spectral emulator

Once we have our pre-processed grid, we can make our spectral emulator and train its GP hyperparameters.

from Starfish.grid_tools import HDF5Interface
from Starfish.emulator import Emulator

grid = HDF5Interface('F_TRES_grid.hdf5')
emu = Emulator.from_grid(grid)
emu.train()
emu.save('F_TRES_emu.hdf5')

Warning: Training the emulator will take on the order of minutes to complete. The more eigenspectra that are
used as well as the resolution of the spectrograph will mainly dominate this runtime.

Once we have our trained emulator, we can move on to the modeling steps for our data.

1.5.2 Example: Single-Order Spectrum

TODO

1.5.3 Example: Multi-Order Spectrum

Warning: The current, updated code base does not have the framework for fitting multi-order Echelle spectra.
We are working diligently to update the original functionality to match the updated API. For now, you will have to
revert to Starfish 0.2.
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